Parameter Estimation in Mixtures of Truncated Exponentials
نویسندگان
چکیده
Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains. On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The drawback of this approach is that by not directly attempting to find the parameters that maximize the likelihood, there is no principled way of e.g. performing subsequent model selection using those parameters. In this paper we describe an estimation method that directly aims at learning the maximum likelihood parameters of an MTE potential. Empirical results demonstrate that the proposed method yields significantly better likelihood results than regression-based methods.
منابع مشابه
Parameter estimation and model selection for mixtures of truncated exponentials
Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The ...
متن کاملAdmissible Estimators of ?r in the Gamma Distribution with Truncated Parameter Space
In this paper, we consider admissible estimation of the parameter ?r in the gamma distribution with truncated parameter space under entropy loss function. We obtain the classes of admissible estimators. The result can be applied to estimation of parameters in the normal, lognormal, pareto, generalized gamma, generalized Laplace and other distributions.
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملUSING MIXTURES of TRUNCATED EXPONENTIALS for SOLVING STOCHASTIC PERT NETWORKS
In this paper, we transform a PERT network into a mixtures of truncated exponentials Bayesian network. We use the Shenoy-Shafer architecture to propagate the MTE potentials in the resulting MTE PERT Bayes net and thus to find the marginal distribution of the project completion time. Finding the distribution of the project completion time is important because there is no closed form expression f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008